

LINE PRODUC

Fire protection

Every problem has three solutions: my solution, your solution and the right solution

"Plato"

contact us:

THE COMPANY

Founded in 1979 by Giancarlo Alberghini, who immediately defined its objective: to solve all the problems related to pumping water in a professional, fast and decisive way. The second generation already forms part of the Company management, contributing to a "smart" vision of the company.

After introducing several innovative products in the fire-fighting field, the company obtained great recognition from the market, thanks also to the team of trusted and competent people that the management knew how to train.

CERTIFICATIONS

IDROELETTRICA SPA always works according to the highest quality standards. It has been UNI EN ISO 9001 certified since 1999, and obtained the MANAGEMENT SYSTEM CERTIFICATE according to UNI EN ISO 9001:2015 in 2015

IDROELETTRICA SPA manufactures all its steel products in compliance with UNI EN 1090. For this purpose, it obtained the relative certification and trained all its workshop operators.

ACKNOWLEDGMENTS

IDROELETTRICA SPA has a Share Capital of €2,000,000 (fully paid-up), and has been awarded the highest level of economic and financial reliability by the most accredited European Credit Scoring institutions

SAFETY

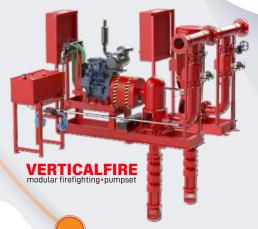
We believe that quality derives from safety, which is why we consider the culture of the operators to be fundamental, which we guarantee through formation and training courses on:

- Work in confined spaces (Italian L.D. 81/2008 and Italian Presidential Decree 177/2011)
- Operating cranes and mobile cranes
- Works at a height
- Driving forklifts
- Operating mobile elevating work platforms (MEWPs)
- Qualified personnel for tasks with an electrical risk (PEI-Qualified Person, PES-Expert Person, PAV-Informed Person)
- Driving exceptional transport vehicles

MEMBERSHIP

IDROELETTRICA SPA is a member of UNI and of the UNI commission "ACTIVE PROTECTION AGAINST FIRE" UNI/CT 034/GL 07 WATER SYSTEMS AND COMPONENTS.

IDROELETTRICA SPA produces not only for the domestic market, but also for international markets, where the reference guidelines are the American NFPA. With this in mind, it chose to become a member of the National Fire Protection Association to also always be updated on this type of international regulation



IDROELETTRICA SPA is a member of the major industry associations with which it collaborates in organising training courses dedicated to the fire-fighting sector throughout the Italian territory.

RANGE OF PRODUCTS FIRE PROTECTION

EUROFIRESOM modular firefighting-pumpset

EUROFIREmodular firefighting number

FIREBRAKE modular firefighting-water storage integrated

FIREBLOCK modular firefighting-system complete of water storage

FOR INTEGRATED FIRE-FIGHTING SYSTEMS.

APPLICABLE STANDARDS IN FIRE-FIGHTING SYSTEMS

- The described fire-fighting systems are manufactured in accordance with the following directives and technical standards.
- The machines are entirely produced in the Idroelettrica SpA facility according to the criteria set forth by: European Directive 2006/42/EC – Machinery Directive
- The technical file is entirely drawn up by the technical staff of Idroelettrica SpA and is kept at the company headquarters.
- All the machines are tested in the Idroelettrica SpA facility

NORMATIVE REFERENCE					
UNI EN 12845:2020	Fixed firefighting systems – Automatic sprinkler systems – Design, installation and maintenance				
UNI 10779:2021	Fire-fighting systems – Hydrant systems – Design, Installation and operation				
UNI 11292:2019	Rooms designed to house pumping units for fire-fighting systems - Construction and functional characteristics				
UNI EN 1090-1	Execution of steel and aluminium structures – Part 1: requirements for conformity assessment of structural components				
UNI EN 1090-2	Execution of steel structures and aluminium structures – Part 2: technical requirements for steel structures				
European Directive 2006/42/EC	Directive 2006/42/EC of the European Parliament and of the Council of 17 May 2006 relating to machinery and amending Directive 95/16/EC (recast)				
European Directive 2014/30/EU	Directive 2014/30/EU of the European parliament and of the Council, relating to electromagnetic compatibility				
European Directive 2014/35/EU	Directive 2014/35/EU of the European Parliament and of the Council, relating to electrical equipment intended for use within certain voltage limits.				

EUROFIRE

FIRE-FIGHTING PRESSURISATION UNITS ACCORDING TO UNI EN 12845 WITH HORIZONTAL CENTRIFUGAL PUMPS

MAIN FEATURES

The EUROFIRE series in MODULAR version includes units with:

Flow rate Q	up to	800	m³/h
Head H	up to	159	mwc
Electric pump	up to	250	kW
Diesel pump	up to	255	kW

Every module is autonomous and reflects the definition of a pumping unit (PUMP-SET) as described in UNI 11292:2019 3.15.

Every pumping unit includes:

- End suction, back pull out single-impeller centrifugal pump UNI EN 12845 10.1
- Electric motor with power exceeding that required by the pump at NPSH16 UNI EN 12845 10.1-10.9.1-10.9.3
- Spacer flexible coupling UNI EN 12845 10.1
- Base in metal profiles
- Electrical panel with Epro intelligent control unit
- Hydraulic accessories external to the pump-set with diameters sized according to UNI EN 12845 13.2.3
- Electric accessories external to the pump-set

Every pumping unit is designed to be independently secured to the foundation/base floor UNI 11292:2019
6.6

The units are available in the **POSITIVE** and **NEGATIVE SUCTION HEAD** versions

VERTICALFIRE

FIRE-FIGHTING PRESSURISATION UNITS UNI EN 12845 WITH SUBMERSIBLE AXIAL FLOW VERTICAL SHAFT PUMPS

MAIN FEATURES

The VERTICALFIRE series includes units with:

Flow rate Q	up to	450	m³/h
Head H	up to	168	mwc
Electric pump	up to	110	kW

Diesel pump up to 108 kW in NA curve

Every module is autonomous and reflects the definition of a pumping unit (PUMP-SET) as described in **UNI** 11292:2019 3.15.

Every pumping unit of the **ELECTRIC VERTICALFIRE** series therefore includes:

- Main submersible axial flow vertical shaft pumps (VTP), with connection heads for electric motors UNI EN 12845 10.1
- Electric motors with power exceeding that required by the pump at the peak of the power curve UNI EN 1284510.1
- Spacer flexible coupling UNI EN 12845 10.1
- Base in metal profiles
- Electrical panel with Epro intelligent control unit
- Hydraulic accessories external to the pump-set with diameters sized according to UNI EN 12845 13.2.3
- Electric accessories external to the pump-set

Every pumping unit is designed to be independently secured to the foundation/base floor **UNI 11292:2019 6.6**

In this case, the reference hydraulic diagram is that of the underground storage tank with the pump compartment placed immediately above it. Choosing to use this type of machine to set up the units guarantees that the main pumps are always in positive suction head. Thereby eliminating any issue related to pump priming and accessibility of the components of the pressurisation unit.

EUROFIRE SOM

Fire-fighting pressurisation units UNI EN 12845
with submersible electric pumps

MAIN FEATURES

The EUROFIRE SOM series includes units with:

Flow rate Q up to 150 m³/h
Head H up to 166 mwc
Electric pump up to 30 kW

Every module is autonomous and reflects the definition of a pumping unit (PUMP-SET) as described in UNI 11292:2019 3.15.

Every pumping unit of the SOM VERTICALFIRE series therefore includes:

- Submersible main pumps
- Submersible electric motors
- Base in metal profiles
- Electrical panel with Epro intelligent control unit
- Submersible Jockey pump complete with control circuit
- Hydraulic accessories external to the pump-set with diameters sized according to UNI EN 12845 13.2.3
- Electric accessories external to the pump-set
- 10 metres of cable for every electric pump

The pumping unit is designed to be independently secured to the foundation/base floor UNI 11292:2019 6.6

It is typical to solve installation problems related to pump intake (height difference or pipes that are too long) or to the dimensions of the installation room, insufficient for a traditional unit. Please note that the submersible electric pumps can only be used if positive suction head horizontal pumps or vertical turbine pumps cannot be applied UNI EN 12845 10.6.1

FIRE-FIGHTING CONTROL UNITS LEPRO 12845

Control unit to manage and communicate type A and Modbus/TCP alarms. management up to 8 control panels, maximum remote distance 800 m.

EPRO ELECTRIC

Control unit for firefighting units with electric motors

EPRO DIESEL

Control unit for firefighting units with endothermic engines

ALIMENTAZIONE DEL MOTORI
DELLA POMPA ANTINCENDIO
NON APRIRE IN
CASO D'INCENDIO
ENGINE POWER
OF FIRE PUMP
NOT OPRIN

EPRO ENERGY

Control unit for UPS

The EPRO control unit has been specifically developed to be used in electrical panels to control fire-fighting pumping units, in accordance with UNI EN 12845, installed in UNI 11292 compliant rooms.

All the main data, related to the events of the fire-fighting pumping unit, are stored inside the control unit itself in chronological order and are available via Modbus TCP or USB port.

MAIN COMMON FEATURES

- Innovative design
- Simple and intuitive user friendly interface
- High resistance to vibrations
- 4.3" colour TFT LCD display
- 512 storable events and alarms
- 10/100 Mbps Ethernet port Modbus TCP/IP
- Type "A" USB port to download saved data
- Jockey pump monitoring
- Water reserve level monitoring
- Valve position monitoring
- Sprinkler flow switch monitoring
- Local drain pump monitoring
- Ambient temperature visible on the display
- Local fan management
- Message screen
- Diesel engine tools screen

TECHNICAL DATA

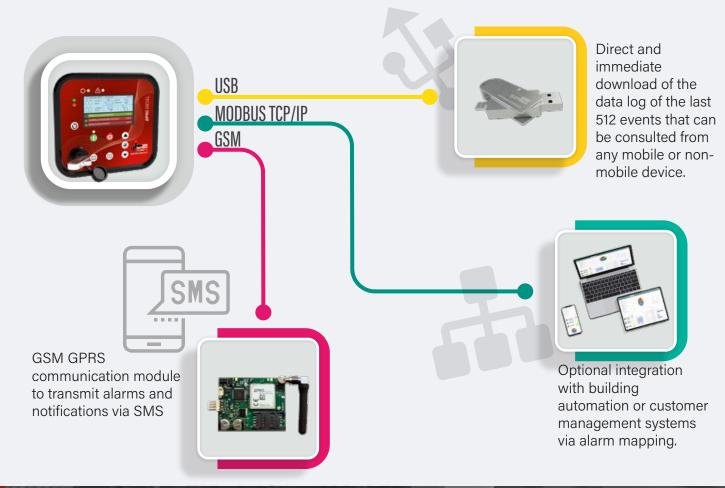
IP55 protection
Operating temperature -10°C + 60°C
Max humidity 70%
Max output contacts flow rate: 5A 24V
Removable connection terminals 5.08/7.62 pitch
Max external panel dimensions 192 x 176 mm

PROGRAMMING MENU

Local Management
Pump Unit Management
System Management

LANGUAGES

Italian English French Estonian Latvian Romanian


LIST OF COMMON ALARMS

- Pump running
- Start-up request
- Failed start-up
- Power failure
- Faulty control unit
- Pump not delivering
- Drain pump running
- Tripped local sprinkler
- · Tripped Jockey pump circuit breaker
- Jockey pump prolonged operation
- Too many Jockey pump start-ups
- High water reserve level
- Low water reserve level
- Faulty water reserve sensor
- Abnormal water reserve level
- Abnormal valve position

LIST OF EPRO DIESEL ALARMS

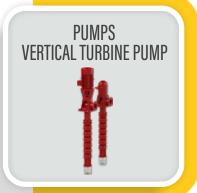
- Low fuel level
- Low oil pressure
- High header temperature (air-cooled motors)
- High water temperature
- High oil temperature
- Faulty battery charger 1
- Faulty battery charger 2
- Faulty battery 1
- Faulty battery 2
- Interrupted pick-up
- Faulty oil heater
- Faulty battery charger 1 fuse
- · Faulty battery charger 2 fuse
- Faulty emergency panel
- No exchanger flow

INTELLIGENT DATA MANAGEMENT

__ IDROE

FEATURES EUROFIRE SYSTEMS

CENTRIFUGAL PUMPS BACK-PULL OUT



VERTICALFIRE

Pump

Pump

Structure

Accessories

Motor Pump Components

Intake

Delivery

Power supply

An **Inspectable check valve** is fitted on the delivery of every main pump to facilitate maintenance.

Delivery manifold in electrowelded and painted steel, double flanged, complete with fittings on the pumps and utilities, with a diameter that allows speeds to be kept lower than those set forth in UNI EN 12845 13.2.3 MANIFOLD PLACED AT H
≥ 2 m

Base in sturdy welded and painted steel sections.

Pump-Sets **independently secured to the ground** to limit the transmission of vibrations **UNI 11292 6.6**

Intake kit consisting of an eccentric cone with a horizontal upper part and an opening angle of less than 20° installed on the intake side of the main pumps, made without edges and obstructions to minimise pressure drops; a minimum diameter of 65 mm to guarantee maximum water speed, suitable for the designed flow rate **UNI EN 10.6.2.1.**, complete with a vacuum gauge with tap and throttle shut-off valve on the side with the larger diameter.

Delivery column supported autonomously with respect to the pump **UNI EN 12845 10.1**, with hydraulic accessories enlarged to a diameter that allows speeds to be kept lower than those set forth in **UNI EN 12845 13.2.3**

Complete with a throttle valve with a locking option, with a position indicator and manual reducer where required, an inspectionable clapet type check valve with reduced pressure drops and a diaphragm recirculation circuit for cooling the main pumps during operation at zero flow **UNI EN 12845 10.5.**

Power supply

The wiring inside the unit consists of FG16 OM16-0.6/1 kV type cables, compliant with the standard and having a combustion behaviour in conformity with **IEC EN 60332-3-24** and a conductor diameter of at least 2.5 mm² of Cu **UNI EN 12845 10.8.2.**

Main pump control panels fitted with a preset Epro control unit to manage the main pump according to **UNI-EN12845**, complete with a display to view and record data and alarms

>> Accessories

>> Motor Pump Components

Cross cardan joint to connect the pump to the diesel engine.
Using the cardan joint prevents the transmission of vibrations between the diesel engine and the pipes.

Using the heat exchanger instead of the radiator allows the cooling works that are to be set up in the room to be reduced in accordance with **UNI 11292**. The water/water exchangers fitted on our units are designed by us and are manufactured in our factory.

Double-walled fuel tank, with internal stainless steel wall to eliminate the risk of clogged pipes due to oxidation residue, which can guarantee 6 hours operating autonomy at full power. Complete with visual level indicator, low level alarm float connected to the EPRO Control Unit, tank outlet fuel filter and direct support that is autonomously secured to the ground UNI 11292: 2019 6.10.1

Sprinkler Kit for Fire Protection of the Water System UNI EN 12845:2020 10.3.2

The kit consists of a sprinkler with a standard 141°C response bulb, pendent with protective cage, a flow switch Ø 2" to detect sprinkler operation with CE marking and compliant with EN 12259-5 and test and drain circuit with a nom. diameter >15mm

The lengths of the free straight sections upstream and downstream of the flow switch are respected

Flow meter with delayed reading for vertical/horizontal installation. Accuracy $\sim 5\%$ on full scale value. Internal recirculation circuit with self-cleaning function.

Allows the flow rate of the main pumps to be measured during testing and periodic checks **UNI EN 12845:2020 20.3.2.5 - 20.3.4.2**


Jockey pump automatic start and stop circuit complete with a pressure switch, class 1.6 pressure gauge, check valve, shut-off valve and 20 & diaphragm tank

FOR FIRE-FIGHTING PUMPING UNITS.

PREFABRICATED FIRE-FIGHTING MODULE UNI EN 12845 - UNI 11292 - UNI EN 1090

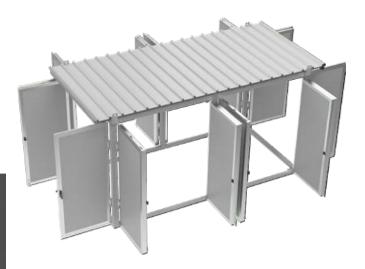
Complete and autonomous fire protection system. Constitutes the room of the fire-fighting water unit. It can contain centrifugal pumps, vertical submersible pumps (VTP) and the control equipment for submersible pumps.

Structure designed and built according to UNI EN 1090

FIREBOX° is designed and built according to **UNI EN 1090** Part 1 and Part 2 (Execution of steel structures and aluminium structures – requirements for conformity assessment of structural components).

It is essential to comply with this standard to build and certify metal structures made in the workshop correctly. Only by complying with **UNI EN 1090** can the metal structures be **CE** certified.

Fully assembled accessories


Inside **FIREBOX** there are all the accessories indicated in **UNI 11292** and they are connected, such as: fire extinguishers, general and emergency lighting, 2" sprinkler system, flue pipe, air extraction fan, heating system, openings for permanent ventilation, service electrical system and double-walled diesel tank.

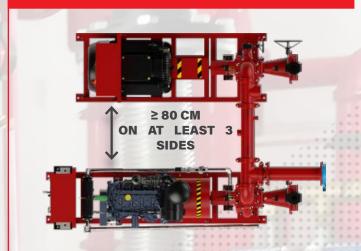
Full accessibility and safety of the operators

FIREBOX° consists of side buffers in sandwich panels EI 60 A2 s1 d0, which create movable sides that can be fully opened. It is therefore possible to access the components housed in it from all sides, both during operation and maintenance, as set forth in UNI 11292 4.2.1 - 4.2.2

Testing

The components fitted in each **FIREBOX**° have been tested in the test room, in accordance with the requirements set forth in **UNI EN 12845**. In particular, the diesel engine is tested in accordance with **UNI EN 12845/10.9.13.**

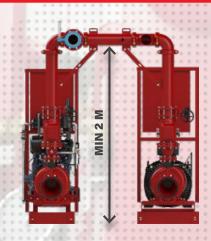
Mandatory certifications


EC Declaration of conformity of the pressurisation unit drawn up in accordance with Annex II a of **DIR**. **2006/42/EC**.

Structural report of the room according to **UNI EN 1090**, drawn up by a qualified professional, complete with an anti-seismic report, linked to the individual installation site.

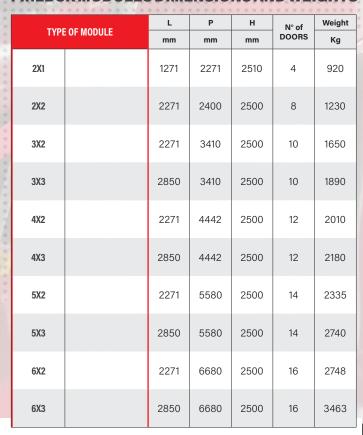
FIRE-RESISTANCE RATING CERTIFICATION and **PROD. DEC.** of the room, drawn up by a qualified professional, who certifies the fire resistance (R60) of the load-bearing structure.

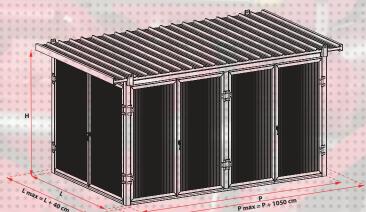
Declaration according to **Italian M.D. 37/08** of the hydraulic and electrical system of the room.


INTERNAL WORKSPACES

Workspace

Inside **FIREBOX** the WORKSPACE (**UNI 11292 3.13**) around every pumping unit (PUMP SET **UNI 11292 3.15**) has minimal plan dimensions that are equal to or greater than 80 cm on at least three sides **UNI 11292 5.2.2.**


ROOM MINIMUM INTERNAL HEIGHT



Room height

A height of not less than 2.4 m is guaranteed in the workspace and along the path to reach it; the delivery manifold and all the pipes are placed at a minimum height of 2 m UNI 11292 5.2.2

FIREBOX MODULES DIMENSIONS AND WEIGHTS

Fire resistance R60

A bearing structure in steel profiles, sized to obtain a fire resistance of 60 minutes (R60) UNI EN 12845:2020 10.3.1.

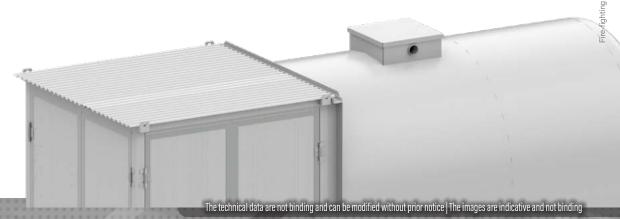
Reaction to fire

The side buffer of **FIREBOX**° consists of sandwich panels that make it thermally insulated, thanks to the 80 mm rock wool (El60); therefore, they are set up on all sides of the opening walls with $A_2 s_1 d_0$ fire reaction efficiency, as set forth in **UNI 11292 5.1.**

PREFABRICATED FIRE-FIGHTING MODULE WITH VTP PUMPS UNI EN 12845 - UNI 11292 - UNI EN 1090

VERTICAL TURBINE PUMPS

Using vertical submersible axial flow pumps (UNI EN 12845/10.6.1) leads to the enormous advantage of having an always positive suction head, even with an underground storage water reserve. The vertical pumps can be connected to both electric and diesel engines and guarantee very high operational reliability.


ALWAYS POSITIVE SUCTION HEAD

Choosing to use **FIREBOX**° with vertical pumps and an underground water reserve implements a POSITIVE SUCTION HEAD hydraulic system, as preferred by UNI EN 12845/10.6.1. In this case, there is no limitation to the usable depth within the water reserve.

OPENABLE ROOF

Where units with VERTICAL TURBINE PUMPS are housed, **FIREBOX**° devices are made with an openable roof to facilitate any maintenance. The machines are assembled in the facility and can be positioned in the water reserve with a simple crane.

Fire-fighting units catalogue - Edition: November-2022

PREFABRICATED FIRE-FIGHTING MODULE WITH INTEGRATED WATER RESERVE UNI EN 12845 - UNI 11292 - UNI EN 1090


FIREBLOCK

The FIREBLOCK system is a fire-fighting system in the outdoor version, consisting of two main elements, the FIREBOX module containing a fire-fighting pressurisation unit UNI EN 12845 and an outdoor water reserve in a horizontal or vertical application.

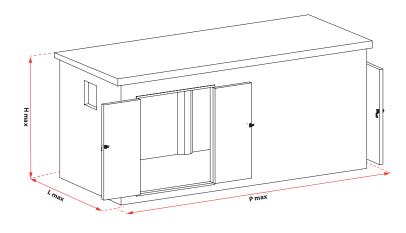
Main features

- Side buffers in sandwich panels El 60 A2 s1 d0, which create movable sides that can be fully opened
- Full accessibility for people and for components to be handled
- Perfectly compliant with technical standards and legal provisions
- Designed to be installed in seismic areas
- No ladders and risks for the safety of people
- Bearing structure of the R60 room
- Easy to disassemble and transport
- UNI 1090 certified and produced entirely in the IDROELETTRICA SPA facilities
- EC certification according to Machinery Directive 2006/42/EC
- The water reserve is calculated to provide the required useful capacity

PREFABRICATED FIRE-FIGHTING MODULE IN VIBRATED REINFORCED **CONCRETE UNI EN 12845 - UNI 11292**

Complete and autonomous fire protection system. Constitutes the room of the fire-fighting water unit. It can contain centrifugal pumps, vertical submersible pumps (VTP) and the control equipment for submersible pumps.

FIREBOXcav is designed and built in vibrated reinforced concrete in a monobloc solution with a sloping roof, it does not require foundations and can be easily relocated.


Made with CE certified materials, concrete in compression resistance class C45/55 with IDROCONCRETE 1200: crystallising additive for integral system waterproof internal steel reinforcements concrete, with improved adhesion, steel fibres and electro-welded square mesh type B450C, accompanied by a REACTION TO FIRE certificate (class: A1) issued by an external

body according to UNI EN standards, complete with:

- Fire protection pumping units UNI EN 12845
- Internal white paint.
- Sealing of the roofing plate to the cabin.
- External coating with grey anti-cracking elastomeric Anodised aluminium ventilation grid.
- paint.
- Slated sheath over the roof.
- FIRE-RESISTANCE RATING 60 Doors.

Fully assembled accessories

Inside FIREBOXcav there are all the accessories indicated in UNI 11292 and they are connected, such as: fire extinguishers, general and emergency lighting, 2" sprinkler system, flue pipe, air extraction fan, heating system, openings for permanent ventilation, service electrical system and double-walled diesel tank.

FIREBOX MODULES DIMENSIONS AND WEIGHTS

TYPE OF MODULE		Maximum cabin dimensions			Weight
		L	P	Н	weight
		mm	mm	mm	kg
Cav22		3400	2550	2650	1295
Cav23		3900	2550	2650	1442
Cav24		4400	2550	2650	1598
Cav25		4900	2550	2650	1803
Cav26		5400	2550	2650	1955
Cav27		5900	2550	2650	2106
Cav28		6400	2550	2650	2258

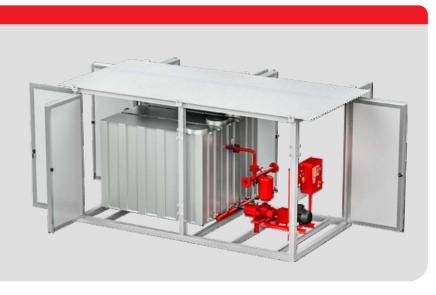
PREFABRICATED FIRE-FIGHTING MODULE WITH SUBMERSIBLE ELECTRIC PUMPS UNI EN 12845 - UNI 11292 - UNI EN 1090

FIREBOX SOM is a complete and autonomous fire-fighting room serving systems that use submersible pumps as main pumps.

FIREBOX SOM complies with all the points in UNI EN 12845, UNI 11292, UNI 10779 and IEC 64-8 and the provisions of Italian M.D. 81/2008 (Consolidated text on occupational health and safety).

Main features

- Side buffers in sandwich panels EI 60 A2 s1 d0, which create movable sides that can be fully opened
- Full accessibility for people and for components to be handled
- Perfectly compliant with technical standards and legal provisions
- Designed to be installed in seismic areas
- No ladders and risks for the safety of people


- Bearing structure R60
- Easy to disassemble and transport
- UNI 1090 certified and produced entirely in the IDROELETTRICA SPA facilities
- EC certification according to Machinery Directive 2006/42/EC
- It can be used with existing water reserves, both external and underground

PREFABRICATED FIRE-FIGHTING MODULE WITH INTEGRATED WATER RESERVE UNI EN 12845 - UNI 11292 - UNI EN 1090

The **FIREBRAKE** system is a water supply system for fire-fighting systems in the external version and consists of two main elements:

- A FIREBOX Module containing a firefighting pressurisation unit UNI EN 12845
- A water reserve implemented with parallelepiped galvanised tanks for firefighting use, placed in parallel and inside the FIREBOX. The maximum geometric volume achievable is 6 m³.

The water reserve is complete with a 2" filling water valve and a minimum and maximum level alarm float. The two components are fully integrated and all develop inside the **FIREBOX**, thereby avoiding any problems related to frost.

FIREBRAKE is designed and built according to **UNI EN 1090** Part 1 and Part 2 (Execution of steel structures and aluminium structures – requirements for conformity assessment of structural components). It is essential to comply with this standard to build and certify metal structures made in the workshop correctly.

Every **FIREBRAKE** module is calculated and designed by a qualified engineer and complies with all the points in UNI **EN 12845, UNI 11292**, UNI 10779 and IEC 64-8 and the provisions of Italian M.D. 81/2008 (Consolidated text on occupational health and safety).

Main features

- Side buffers in sandwich panels EI 60 A2 s1 d0, which create movable sides that can be fully opened
- Full accessibility for people and for components to be handled
- Perfectly compliant with technical standards and legal provisions
- Designed to be installed in seismic areas
- No ladders and risks for the safety of people
- Bearing structure of the R60 room

- Easy to disassemble and transport
- UNI EN 1090 certified and produced entirely in the IDROELETTRICA SPA facilities
- EC certification according to Machinery Directive 2006/42/EC
- The water reserve is calculated to provide the required useful capacity

FIRE-FIGHTING MODULE WITH INTEGRATED WATER RESERVE UNI EN 12845 - UNI 11292

FIREcompact

Dedicated to the supply of tourist accommodation facilities of up to 100 beds and other businesses that require single-type water supply

The basic module includes a water storage reserve in hot galvanised steel with a capacity of 2000 ℓ , with a main submersible electric pump and a Jockey submersible pump housed inside. All the required hydraulic and electrical accessories to meet the EN 12845 requirements to implement fire-fighting pressurisation units are mounted and connected to the water reserve.

The FIRECOMPACT module was designed to be used if the water network cannot fulfil the requirements set forth in the standard and therefore, a water reserve and a pressurisation unit need to be installed.

The module is dedicated to protect activities that require a single type of water supply and that fall within hazard level 1 according to UNI 10779 – Example, tourist accommodation – hotels with less than 100 beds (class PB according to the RTV of 9/8/2016)

In the case of hazard level 1, UNI 10779 requires 4 hoses to be fed simultaneously, thereby ensuring each has a flow rate of not less than 35 l/min and a pressure of not less than 0.2 MPa.

The supply must ensure an autonomy of not less than 30 mins. The volume to be stored in the water reserve therefore reaches 4.2 m³.

If the top-up coming from the aqueduct is not able to guarantee the 30 minutes of autonomy required by law, this first module can be combined with one or two 2000 ℓ water reserves, thereby fully covering the required storage volume. Please remember that if only the module containing the pumps is used, the top-up required by the aqueduct must be 73 l/min; if using two water reserves in parallel, the top-up becomes 6 l/min. Obviously, with three water reserves in parallel, there is no need to count the top-up in the calculation of the available water reserve.

FEATURES FIREBOX SYSTEMS

A bearing structure in steel profiles, sized to obtain a fire resistance of 60 minutes (R60) UNI EN 12845:2020 10.3.1.

When a diesel engine is installed, there is an opening fitted with a protective stainless steel grid and an axial fan powered by the electricity mains or by UPS EPRO ENERGY through which the hot air is ejected, if necessary.

The fan also works in ambient air exchange mode. The operating cycles (pause/work) can be set from the EPRO control unit and are controlled by an NTC temperature probe.

The fan flow rate is calculated in accordance with UNI 11292:2019 5.4.2 and can highly guarantee the air change required by the standard.

The side buffer of FIREBOX consists of sandwich panels that make it thermally insulated, thanks to the 80 mm rock wool (El60); therefore, they are set up on all sides of the opening walls with **A2-s1**, **d0** fire reaction efficiency, as set forth in **UNI 11292 5.1**.

Roofing with sandwich panel with corrugated profile thickness 80 mm, fire resistance FIRE-RESISTANCE RATING 60 UNI EN 12845 10.3.1, reaction to fire A2-s1, d0 UNI 11292 5.1.

Exhaust gas expulsion pipe of suitable diameter, adequately insulated and protected against accidental contact by means of high temperature ceramic fabric and/or stocking. Exhaust outlet at a height > 2.4 m UNI 11292 6.5.

EMERGENCY PANEL

EPRO ENERGY

Auxiliary electrical panel compliant with IEC standards, with a 1000 VA uninterruptible power supply (UPS) served by 2 dedicated batteries to power the axial fan even in case of power failure to dissipate hot air and to power the emergency ceiling light; thereby ensuring the autonomy set forth in UNI 11292 5.4 for the fire-fighting system to work.

FIELDS OF APPLICATION REFERENCES

FOOD AND BEVERAGE

LSD

INDUSTRY

INFRASTRUCTURE & SERVICES

BUYING GUIDE FOR FIRE-FIGHTING ROOMS AND UNITS

Ground fixing pump set

Normative reference:

UNI 11292:2019 6.6

Compliance with the prohibition of the use of rubber joints

Normative reference:

UNI EN 12845 17.1.4 - UNI 11292 6.6 - UNI TR 11438

Ventilation via emergency panel in case of motor pumps

Normative reference:

UNI 11292 5.4-5.4.1

4 mm tubular box frame + load-bearing roof

Normative reference:

UNI EN 12845 10.3.1

Opening walls - fire reaction A2-s1, d0 El60

Normative reference:

UNI 11292 5.1

OTHER PRODUCTS

IDROELETTRICA STANDARD

Drain pipe positioned at the top

Normative reference:

UNI 11292 6.5

Compliant electrical cables and wiring

Normative reference:

IEC EN 60332.3.24 - UNI EN 12845 10.8.2

Structural report of the room according to UNI EN 1090

Normative reference:

UNI EN 1090

Fire resistance certification of products/construction elements on site

Normative reference:

FIRE-RESISTANCE RATING CERTIFICATION - PROD. DEC.

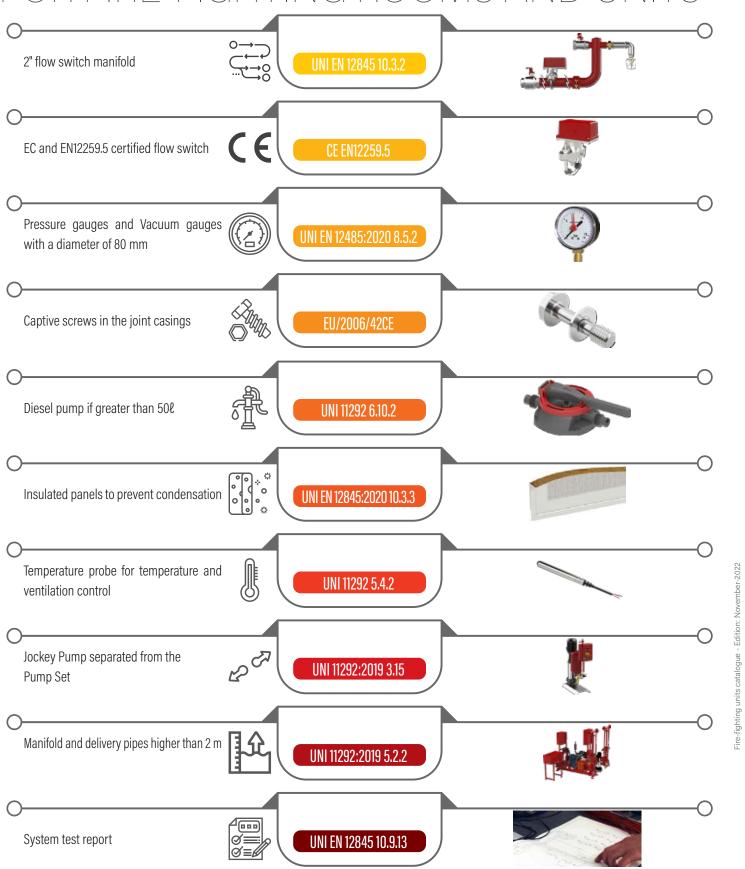
DM 37/08

Declaration according to Italian M.D. 37/08 of the hydraulic and electrical system of the room

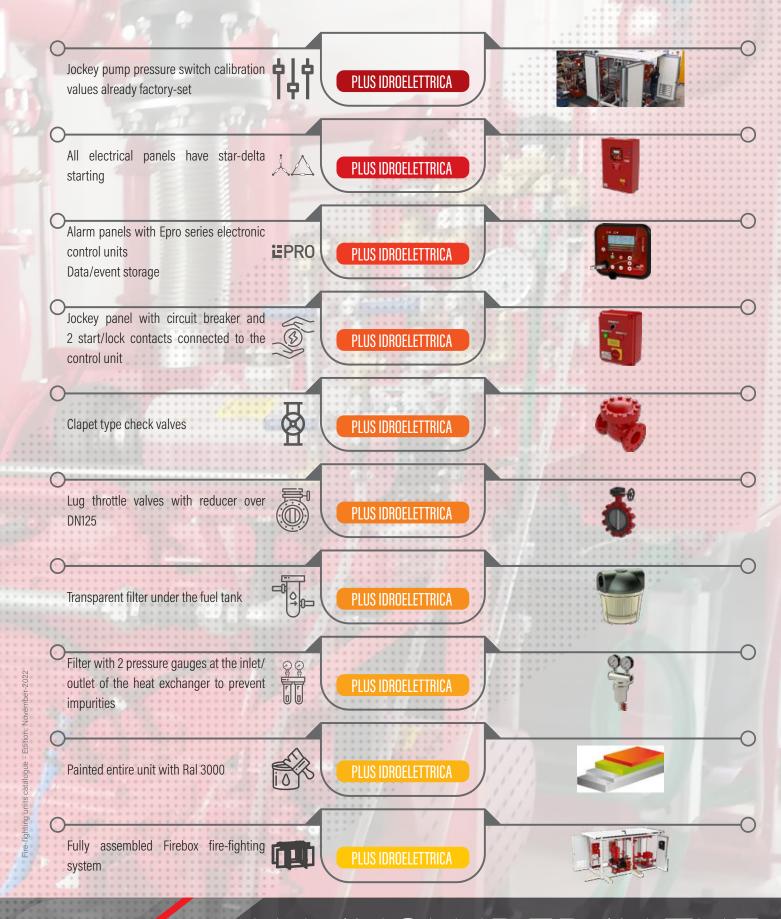
Normative reference:

Italian M.D. 37/08

Declaration of conformity of the pressurisation unit/room


Normative reference:

Italian M.D. 2006/42/CE


#BUYINGGUIDE

ADDITIONAL SAFETY DEVICES

FOR FIRE-FIGHTING ROOMS AND UNITS

ALL INCLUDED IN THE IDROELETTRICA STANDARD

ire-fighting units catalogue - Edition: November-2022

LIST OF SERVICES

DIRECT FACTORY PRODUCTION We manufacture our steel products in full compliance with European standards on structures implemented in the workshop EN 1090.

COMMERCIAL RELIABILITY - CRIBIS PRIME COMPANY, the recognition of maximum commercial reliability based on the CRIBIS Rating - a dynamic and constantly updated indicator on the company's reliability.

TECHNICAL COMMERCIAL ASSISTANCE
FOR QUOTES We provide a rapid and
competent technical/commercial
assistance service to support the
customer in the quotation stage

SPARE PARTS WAREHOUSE - STORE IN VIA BELLINI

The company has a large spare parts warehouse, with over 10,000 items

ON SITE ASSEMBLY ASSISTANCE by specialised personnel.

FIRST START-UP Technical on site interventions, for commissioning, activation and start-up of fire-fighting pressurisation units and pumping systems in general

TESTS CARRIED OUT IN THE TEST ROOM OR IN THE TANK Our company has a modern Test Room to test all types of single pumps and complex pumping units.

REPAIR WORKSHOP Our personnel have been adequately trained to be able to carry out in-house repairs of pumps, electric pumps and motors (electric and endothermic) of any brand.

ASSISTANCE REQUEST through our quick and competent support service on pumping systems and relevant control devices.

WARRANTY Our company guarantees its products according to the terms set forth in Italian L.D. No. 206 of 06/09/2005.

GOODS DELIVERY LOGISTICS organisation of exceptional transport, with and without escort, in Italy and abroad.

It is possible to provide custom services, including unloading and positioning, through special semi-trailers owned by the company, in full compliance with the regulations that govern the transport of special loads.

ACADEMY IDROELETTRICA

CLASSROOM TRAINING COURSES

They are held at the headquarters of Idroelettrica SpA and consist of lectures in the classroom, held by teachers of the highest level, who are part of our technical and R&D structure.

COURSES FOR MAINTENANCE PERSONNEL AND RETAILERS

They are held in the two test rooms, which are within our facility. The topics covered follow a technical/practical approach to offer participants a suggestion on the correct "modus operandi", which is essential when operating within utmost regulatory correctness.

COURSES ON TOUR

They consist of lectures in the classroom, organised by two of the most qualified Italian fire-fighting associations that provide training in this field, throughout Italy, PREVENTIINCENDITALIA and FIREPRO.

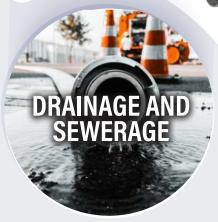
WEBINAR

ACADEMY has also been collaborating for more than ten years with PREVENTEINCENDITALIA and with FIREPRO, organising training courses dedicated to the fire-fighting sector throughout Italy. The courses are held in Web Conferencing mode in a virtual classroom.

#training

NOT ONLY FIRE PROTECTION IDROELETTRICA IS AL

ELECTRIC PUMPS FOR CLEAR WATER



MORE INFORMATION IN THE PRO CATALOGUE

BY REGISTERING ON OUR SITE YOU WILL FIND ...

CASE STUDY

THE EXPERT REPLIES

NEWSLETTER

TECHNICAL SPECIFICATIONS

STANDARDS

APPLICATION STUDY

(FRANK PERDUE)

im idroelettricaspa

▶ Idroelettrica Modena (○) @idroelettrica

idroelettrica.antincendio

END SUCTION normalised single-impeller centrifuge with **BACK PULL OUT** horizontal shaft, with a spiral diffuser and separate support; axial intake and radial delivery; pumpmotor connection by means of a spacer flexible coupling complete with a safety guard UNI EN 12845 10.1

Pump:

Pump body and impeller

Shaft

Mechanical seal

in EN GJL 250 cast iron in AISI 431 stainless steel ceramic-graphite

32-160

		Мо	otor	Pump	Fittings					Flow Rate - m ³ /h			
Pump Model	Pump ID	Electrical	Diesel	Intake	Delivery					riow Rate - m /n	l		
		kW	kW	Ø	Ø		0	5	10	15	20	25	30
32-160/1	010	3	6.2	50	32	I	29.5	29.3	29.2	29.0	28.0	25.8	

32-200

		Мо	tor	Pump	Fittings					Flow Rate - m ³ /h	1		
Pump Model	Pump	Electrical	Diesel	Intake	Delivery								
		kW	kW	Ø	Ø		0	5	10	15	20	25	30
32-200/14	020	4	6.2	50	32		40.5	39	37	34.5	30	24	
32-200/2	025	5.5	6.2	50	32		50	48	46	43	40	37	
32-200/3	026	5.5	6.2	50	32	<u></u>	53	53	51	49	44.5		
32-200/4	027	5.5	6.2	50	32	(mwc)	56	56	54.5	51.5	46.5		
32-200/5	028	7.5	6.2	50	32	Ξ	54	50.5	48	44.5	41	36	
32-200/8	030	7.5	7	50	32		61	61	60	58	53		
32-200/9	032	7.5	7	50	32		58.5	57.5	56	53	48	43	

32-250

		Мо	tor	Pump I	Fittings								. 3.1					
Pump Model	Pump ID	Electrical	Diesel	Intake	Delivery							Flow Ha	te - m³/h					
		kW	kW	Ø	Ø		0	5	10	15	20	25	30	35	40	45	50	55
32-250/3	035	11	12.8	50	32		91	91	89	84	69							
32-250/13	036	15	17.5	50	32		77.5	77	76.5	76	76	74	70					
32-250/5	037	15	17.5	50	32		61	61	61	60.5	60	59	57.5	56	54	52	49	
32-250/7	040	18.5	17.5	50	32	~	66	66	66	66	65.5	65.5	65	64	62	59.5	56.5	
32-250/11	045	18.5	17.5	50	32	(mwc)	89.5	89.5	89.5	89.5	89	87	83	77				
32-250/8	052	18.5	25.2	50	32	Ξ.	70	70	70	69.5	69	68	67	65.5	64	62	60	
32-250/10	047	18.5	25.2	50	32		96	96	95.5	95	94.5	92	89	83				
32-250/9	050	22	25.2	50	32		78	78	78	78	77	76	75	73.5	72	70	67	
32-250/12	055	30	25.2	50	32		96	95.5	95	94.5	94	93	92	91	89.5	88	85	

Note

The data on the left of the reference refer to the maximum delivery speed allowed of 6 m/sec.

The data highlighted in red refer to speeds exceeding 6 m/sec. The data on a grey background highlight NPSH-R values > 5m.

For installations in HHS-HHP systems, contact our technical department.

END SUCTION normalised single-impeller centrifuge with **BACK PULL OUT** horizontal shaft, with a spiral diffuser and separate support; axial intake and radial delivery; pumpmotor connection by means of a spacer flexible coupling complete with a safety guard UNI EN 12845 10.1

TO

Pump:

- Pump body and impeller
- Shaft
- Mechanical seal

in EN GJL 250 cast iron in AISI 431 stainless steel ceramic-graphite

40-200

		Мо	tor	Pump F	ittings								Flans Da	te - m³/h						
Pump Model	Pump ID	Electrical	Diesel	Intake	Delivery								riow Ka	te - m·/n						
		kW	kW	Ø	Ø		0	5	10	15	20	25	30	35	40	45	50	55	60	65
40-200/5	090	5.5	6.2	65	40		34.5	34	34	33.5	33	32	31	29	26	21	11			
40-200/1	100	7.5	6.2	65	40		43	42	41.5	41	39.5	37.5	35	30	23.5					
40-200/2	103	7.5	7	65	40		47.5	47.5	47	46	45	43	40	36	31					
40-200/3	105	11	10.5	65	40	(mwc)	65	65	64.5	64	63	61.5	59	55	49.5					
40-200/4	110	11	10.5	65	40	ᄪ	58	57.5	57	56.5	56	55	54	52.5	50.5	48	45			
40-200/6	115	15	12.8	65	40		63	63	63	63	62.5	61.5	60	58	55.5	52	48			
40-200/7	116	15	17.5	65	40		66	66	66	66	66	65.5	65	64	62	60	58	55	52	49

40-250

		Мо	tor	Pump I	ittings								Flow Rat	3/b						
Pump Model	Pump	Electrical	Diesel	Intake	Delivery								riow Ra	ie - m·/n						
-		kW	kW	Ø	Ø		0	5	10	15	20	25	30	35	40	45	50	55	60	65
40-250/5	140	15	17.5	65	40		69	68.5	68	67	66	64.5	62	60	57.5	55				
40-250/6	145	18.5	17.5	65	40		80	80	80	80	80	80	80	79	78	76	74	71	60	
40-250/7	150	18.5	17.5	65	40	ા	75	74.5	74	73	71.5	70	67.5	65	62.5	59.5				
40-250/9	160	18.5	25.2	65	40	(mwc)	79	78.5	78	77	75.5	74	72	70	68	65	62			
40-250/10	165	22	25.2	65	40	Ξ	92	91	90	89	88	86.5	85	83	81	78	74			
40-250/12	170	22	25.2	65	40		90	90	89.7	89.5	89	88.5	87.5	86	84	81	77.5	72	66	
40-250/13	180	30	25.2	65	40		97	96.5	96	95.5	95	94	92	90	87	83	79	74		

40-315

			Мо	tor	Pump l	Fittings						Flo	w Rate - m	3 /h				
-	Pump Model	Pump ID	Electrical	Diesel	Intake	Delivery						FIO	w nate - III	/11				
			kW	kW	Ø	Ø		0	5	10	15	20	25	30	35	40	45	50
	40-315/1	181	22	25.2	65	40		105	104.5	104	103	101	98	93.5	85	72		
	40-315/2	182	30	25.2	65	40		121	120.5	120	119	117.5	115.5	111.5	105	98	88	
	40-315/3	184	30	36.5	65	40	(mwc)	128	127.5	127	126	125	123.5	120.5	116	109	99	
	40-315/4	183	37	36.5	65	40	н (п	132	132	131.5	131	130	129	126	122	115	106.5	
+	40-315/5	186	37	36.5	65	40		149	148.5	148	147.5	146.5	145.5	144	141	136	130	
	40-315/6	185	55	66	65	40		126	126.5	127	127.5	128	128.5	129	129	129	129	

Note

The data on the left of the reference refer to the maximum delivery speed allowed of 6 m/sec.

The data highlighted in red refer to speeds exceeding 6 m/sec. The data on a grey background highlight NPSH-R values > 5m.

For installations in HHS-HHP systems, contact our technical department.

END SUCTION normalised single-impeller centrifuge with **BACK PULL OUT** horizontal shaft, with a spiral diffuser and separate support; axial intake and radial delivery; pumpmotor connection by means of a spacer flexible coupling complete with a safety guard UNI EN 12845 10.1

Pump:

Pump body and impeller

Shaft

Mechanical seal

in EN GJL 250 cast iron in AISI 431 stainless steel

ceramic-graphite

50-160

		Мо	tor	Pump	Fittings						Flow Bo	te - m³/h				
Pump Model	Pump ID	Electrical	Diesel	Intake	Delivery						riow na	te - III /II				
		kW	kW	Ø	Ø		0	10	20	30	40	50	60	70	80	90
50-160/1	192	7.5	7	65	50	iwc)	33	33	33	32.5	32	30.5	28	25		
50-160/2	194	11	10.5	65	50	E) H	42	42	41.5	41	40	38	36	33.5	30.5	

50-200

		Мо	tor	Pump	Fittings						Fla	w Rate - m	.3 /L				
Pump Model	Pump ID	Electrical	Diesel	Intake	Delivery						FIO	w Hate - m	1.711				
		kW	kW	Ø	Ø		0	10	20	30	40	50	60	70	80	90	100
50-200/1	200	11	10.5	65	50		45	45	44.5	43.5	42.5	40	35				
50-200/2	205	15	12.8	65	50		51	51	50.5	50	48.5	45	40.5	33.5			
50-200/3	210	15	17.5	65	50	(mwc)	58	58	58	58	56	53	50				
50-200/6	215	18.5	17.5	65	50	н(п	61	61	60.5	59	57.5	55.5	53	49.5			
50-200/4	220	22	25.2	65	50		67.5	67.5	67	66	64.5	62.5	60.5	58	54		
50-200/5	230	22	25.2	65	50		70	70	70	70	70	70	69	66.5	63	59	

50-250

		Мо	tor	Pump	Fittings						FI.		3.41.				
Pump Model	Pump ID	Electrical	Diesel	Intake	Delivery						FIC	w Rate - m	1.711				
		kW	kW	Ø	Ø		0	10	20	30	40	50	60	70	80	90	100
50-250/8	240	18.5	25.2	65	50		68.5	68	67.5	66	63	58					
50-250/3	250	22	25.2	65	50		77	76.5	75.5	74	72	70	67.5	64			
50-250/9	255	22	25.2	65	50		78	77.5	76.5	75	72	68	62				
50-250/5	242	30	25.2	65	50		89	88	87	86.5	85	83	80	76	70.5		
50-250/11	243	30	25.2	65	50	wc)	87	86.5	86	85.5	85	83.5	80	76	72	70	
50-250/6	260	30	25.2	65	50	H (mwc)	94.5	94	93.5	93	91.5	88.5	84	76			
50-250/13	267	30	25.2	65	50		72	72	72	72	72	72	72	68	66	62	
50-250/7	270	30	36.5	65	50		98	97.5	97	95.5	94	92.5	90	86.5	81		
50-250/10	265	30	36.5	65	50		99	98.7	98.5	96.7	95	92	86	80			
50-250/12	266	37	36.5	65	50		94	94	94	94	94	94	93	92	90	86	

Note

The data on the left of the reference refer to the maximum delivery speed allowed of 6 m/sec.

The data highlighted in red refer to speeds exceeding 6 m/sec. The data on a grey background highlight NPSH-R values > 5m.

For installations in HHS-HHP systems, contact our technical department.

END SUCTION normalised single-impeller centrifuge with BACK PULL OUT horizontal shaft, with a spiral diffuser and separate support; axial intake and radial delivery; pumpmotor connection by means of a spacer flexible coupling complete with a safety guard UNI EN 12845 10.1

Pump:

- Pump body and impeller
- Shaft
- Mechanical seal

in EN GJL 250 cast iron in AISI 431 stainless steel ceramic-graphite

50-315

			Мо	tor	Pump I	Fittings							Flour Bot	te - m³/h					
	Pump Model	Pump ID	Electrical	Diesel	Intake	Delivery							riow na	ie - III /II					
			kW	kW	Ø	Ø		0	10	20	30	40	50	60	70	80	90	100	110
	50-315/2	269	45	47.7	80	50		104	103.5	103	102.5	101.5	100	97.5	94	90	85	80	
	50-315/3	273	45	47.7	65	50		121	121	120.5	120	119	118	116	113	110	106	100	90
	50-315/5	271	55	47.7	65	50	េ	126	125.5	125	124.5	123.5	122	120.5	118	115	111	105	97.5
	50-315/6	277	55	66	80	50	(mwc)	120	119.5	119	118	116	114	111	108	104	100	95.5	
-	50-315/7	272	55	66	65	50	I	136	136	135.5	135	134	133.5	132.5	130	127	123	118	112
	50-315/8	275	75	66	80	50		131	131	130.5	130	129	127	124.5	121	117.5	113	108	
	50-315/9	278	75	66	65	50		153	153	152.5	152	151.5	151	150	148	145	142	138	132

The data on the left of the reference refer to the maximum delivery speed allowed of 6 m/sec.

The data highlighted in red refer to speeds exceeding 6 m/sec. The data on a grey background highlight NPSH-R values > 5m. For installations in HHS-HHP systems, contact our technical department.

END SUCTION normalised single-impeller centrifuge with **BACK PULL OUT** horizontal shaft, with a spiral diffuser and separate support; axial intake and radial delivery; pumpmotor connection by means of a spacer flexible coupling complete with a safety guard UNI EN 12845 10.1

Pump:

Pump body and impeller

Shaft

Mechanical seal

in EN GJL 250 cast iron in AISI 431 stainless steel ceramic-graphite

65-200

		Мо	tor	Pump	Fittings					FI	ow Rate - m³	/h			
Pump Model	Pump ID	Electrical	Diesel	Intake	Delivery					-	ow hate - III	/11			
		kW	kW	Ø	Ø		0	20	40	60	80	100	120	140	160
65-200/1	283	15	17.5	80	65		42.5	42.5	42.5	41	38.5	34	28		
65-200/9	274	18.5	17.5	80	65		43	43.5	44	43.5	41				
65-200/10	280	22	25.2	80	65		49	49.5	50	49.5	48				
65-200/13	284	30	25.2	80	65	_ e	48	48	48	48	46	42	37.5	35.5	
65-200/11	290	30	25.2	80	65	(mwc)	62.5	63.5	64	64	61.5	57.5	51.5		
65-200/6	296	30	25.2	80	65	Ξ.	54.5	54	53.5	53	51	48.5	44.5		
65-200/8	295	30	36.5	80	65		60	59.5	59.5	59	57	54.5	51	47	
65-200/12	300	30	36.5	80	65		65	66	67	66.5	64	60.5	55.5		
65-200/5	285	37	36.5	80	65		68	68.5	69	69	68.5	67.5	65	61	

65-250

		Мо	tor	Pump	Fittings					-	D	71.			
Pump Model	Pump	Electrical	Diesel	Intake	Delivery					FI	ow Rate - m ³	/n			
		kW	kW	Ø	Ø		0	20	40	60	80	100	120	140	160
65-250/13	267	30	25.2	80	65		57	59	60	58	56	52	46		
65-250/6	320	30	36.5	80	65		70	71	71.5	70	67	62.5			
65-250/12	325	37	36.5	80	65		73	74	73	72	70	66			
65-250/3	335	37	36.5	80	65		75	74.5	74.5	74	73	70	65	58.5	
65-250/7	330	37	36.5	80	65	·	82	82	81.5	80	77.5	73.5			
65-250/4	352	45	47.7	80	65	(mwc)	95	95	95	95	94	92.5	87	81	
65-250/8	340	45	47.7	80	65	Ξ	92	92	92	91	88.5	85			
65-250/9	345	45	47.7	80	65		84	83.5	83	82	81	79	76	71	
65-250/10	350	55	47.7	80	65		95	95.5	96	94.5	92	83			
65-250/14	326	55	66	80	65		100	100	100	99.5	98	97	93	87.5	
65-250/11	348	55	66	80	65		98	99	99.5	98	95	91			

65-315

05-315																		
		Мо	tor	Pump	Fittings							Fla Da	43 /h					
Pump Model	Pump	Electrical	Diesel	Intake	Delivery							Flow Ha	te - m³/h					
		kW	kW	Ø	Ø		0	20	40	60	80	100	120	140	160	180	200	220
65-315/1	353	55	66	80	65		105	104.5	104	103	101	98	93	85	74			
65-315/2	356	75	66	80	65	(owi	118	118	117	116	114	110	106	100	92			
65-315/3	354	90	102	80	65	E) H	143	143	142.5	142	141	140	136.5	132	126			
65-315/7	355	75	102	80	65		128	127.5	127	126	124	122	120	114	108	97	72	

Note:
The data to the left of the reference refer to the maximum allowed delivery speed of 6 m/sec. The data highlighted in red entail speeds higher than 6 m/sec. The data on a grey background highlight NPSH-R > 5m values. For installations in HHS-HHP systems, contact our technical department.

Nominal hydraulic characteristics of flow rate and head at the pump inlet, with performance tolerances according to UNI EN ISO 9906:2012 Grade 3B

END SUCTION normalised single-impeller centrifuge with **BACK PULL OUT** horizontal shaft, with a spiral diffuser and separate support; axial intake and radial delivery; pumpmotor connection by means of a spacer flexible coupling complete with a safety guard UNI EN 12845 10.1

TO

Pump:

- Pump body and impeller
- Shaft
- Mechanical seal

in EN GJL 250 cast iron in AISI 431 stainless steel ceramic-graphite

80-200

		Мо	tor	Pump l	Fittings						Fla	w Rate - m	3 /L				
Pump Model	Pump ID	Electrical	Diesel	Intake	Delivery						FIO	w Hate - m	·/n				
		kW	kW	Ø	Ø		0	50	80	100	120	140	160	180	200	220	240
80-200/1	358	22	25.2	100	80		40	40	39.5	39	38	36.5	34.5	31.5	27.5	23.5	
80-200/10	362	30	25.2	100	80		50	49	47.5	46.5	45	43	41	39	36	31.5	
80-200/3	357	30	36.5	100	80	<u>~</u>	51	51	50	49	48	47	45	42.5	39	35.5	
80-200/8	367	30	36.5	100	80	(mwc)	53	52.5	51	50	49	47	45	43	40		
80-200/6	360	37	36.5	100	80	Ξ.	57.5	57	56.5	55.5	54	52	50	48	45		
80-200/7	365	45	47.7	100	80		63	63.5	63	63	61.5	60	58	56	53.5		
80-200/9	370	45	47.7	100	80		64	63.5	63	62.5	62	60.5	59	57	55		

80-250

00-230						0.0.0									0.0.0			0 0 0 0
		Мо	tor	Pump	Fittings							Claw Bo	te - m³/h					
Pump Model	Pump ID	Electrical	Diesel	Intake	Delivery							riow na	ie - III /II					
		kW	kW	Ø	Ø		0	50	80	100	120	140	160	180	200	220	240	260
80-250/2	371	45	47.7	100	80		76.5	77	76	75	73	71	68	64	60			
80-250/3	376	55	47.7	100	80		80	80	79	78.5	77	75	72	68	64			
80-250/10	372	55	47.7	100	80		73	73	72.5	72	71	69	66.5	63	59			
80-250/4	373	55	66	100	80		85	85	84	83	82	80	77	74	70			
80-250/11	380	55	66	100	80		80	79.5	78	77.5	76	75	73	70	66	61	52.5	
80-250/5	385	75	66	100	80	H (mwc)	81.5	82	82	81	80	79	77.5	76	74	71	67	63
80-250/6	384	75	66	100	80	I	96	96	96	95	94	92	90	87	84	80		
80-250/12	392	75	66	100	80		89	88.5	87	86.5	85.5	84.5	83	80	77	73	68	
80-250/7	386	75	108	100	80		89	89	89	88.5	88	87	85.5	84	82	79.5	76.5	73
80-250/8	394	75	108	100	80		102	102	101	100.5	100	98.5	96	94	91	87		
80-250/9	396	90	108	100	80		104	104	103	102.5	102	101.5	100	99	97	95	92	89

80-315

0		Мо	tor	Pump	Fittings							Flow Po	te - m³/h					
Pump Model	Pump ID	Electrical	Diesel	Intake	Delivery							riow na	te - III /II					
		kW	kW	Ø	Ø		0	50	80	100	120	140	160	180	200	220	240	260
80-315/3	403	110	108	100	80	lwc)	129	128	127	126	125	123	121	118	115	111	107	103
80-315/4	406	132	149	100	80	Ή.	147	146.5	145.5	145	143.5	142	140	137.5	135	132	129.5	126

Note

The data on the left of the reference refer to the maximum delivery speed allowed of 6 m/sec.

The data highlighted in red refer to speeds exceeding 6 m/sec. The data on a grey background highlight NPSH-R values > 5m.

For installations in HHS-HHP systems, contact our technical department.

END SUCTION normalised single-impeller centrifuge with **BACK PULL OUT** horizontal shaft, with a spiral diffuser and separate support; axial intake and radial delivery; pumpmotor connection by means of a spacer flexible coupling complete with a safety guard UNI EN 12845 10.1

Pump:

Pump body and impeller in EN GJL 250 cast iron
 Shaft in AISI 431 stainless steel

Mechanical seal ceramic-graphite

100-200

		Мо	tor	Pump I	Fittings							Flour Bo	te - m³/h					
Pump Model	Pump ID	Electrical	Diesel	Intake	Delivery							riow na	te - III /II					
		kW	kW	Ø	Ø		0	50	100	150	200	220	240	260	280	320	350	380
100-200/1	410	22	25.2	125	100		33	33	32.5	30.5	27	25.5	24	22	20	15.5		
100-200/3	420	30	36.5	125	100	ુ	41	41	40	38	34.5	33	31.5	30	28	23		
100-200/5	430	37	36.5	125	100	m)	47	47	47	45	42.5	41	39.5	37.5	35	29.5		
100-200/6	435	45	47.7	125	100	I	53	53	52.5	51	49	48.5	47	45.5	44	39.5	33	
100-200/8	440	55	66	125	100		62	62	62	61	59	58	57	55.5	54	51	47	

100-250

		Мо	tor	Pump l	Fittings							Flour Bo	te - m³/h					
Pump Model	Pump ID	Electrical	Diesel	Intake	Delivery							riow na	te - III /II					
		kW	kW	ø	Ø		0	50	100	150	200	220	240	260	280	320	360	400
100-250/3	450	55	66	125	100		69	69	67.5	65.5	62.5	61	59	56	53	47	40	30
100-250/5	460	75	66	125	100		75	75	74	72.5	69.5	67.5	65	62.5	60	54	47	39
100-250/7	471	75	108	125	100	(mwc)	80	80	79	77	74.5	73	70.5	68.5	66	60.5	53	46
100-250/9	476	90	108	125	100	ᄩ	89.5	89	87	85	82.5	81	79.5	77.5	75	69.5	63.5	56
100-250/11	481	110	108	125	100		95	94.5	93	90.5	88	86.5	85	83.5	81.5	77.5	72	63
100-250/14	479	110	108	125	100		99	98.5	97	95.5	93	92	90.5	89	87	83	77.5	70

100-315

		Мо	tor	Pump I	Fittings							Elow Bo	te - m³/h					
Pump Model	Pump ID	Electrical	Diesel	Intake	Delivery							Flow Ha	te - m /n					
		kW	kW	Ø	Ø		0	50	100	150	200	220	240	260	280	320	340	360
100-315/1	513	90	108	125	100		104	103	101	99	94	90	86	81	74			
100-315/11	491	110	108	125	100		114	114	113.5	111	105.5	102	97	91	82.5			
100-315/2	492	110	108	125	100		116	115.5	114.5	112.5	108.5	106	103	99	94	79		
100-315/4	482	132	149	125	100	(mwc)	131	130.5	130	128.5	125.5	123.5	121	118	112.5	100	93	
100-315/6	486	160	149	125	100	E H	138.5	138	137	136	134	132.5	130.5	128	124.5	113	105	
100-315/8	483	160	177	125	100		146	145.5	145	144	142.5	141.5	140	137	133	122	115	
100-315/9	488	200	202	125	100		152	152	150	148	145	143	141	139	137	132	129	
100-315/10	484	200	202	125	100		159	159	159	159	158.5	157	156	154	151	144	138	132

Note:

The data on the left of the reference refer to the maximum delivery speed allowed of 6 m/sec.

The data highlighted in red refer to speeds exceeding 6 m/sec. The data on a grey background highlight NPSH-R values > 5m.

For installations in HHS-HHP systems, contact our technical department.

END SUCTION normalised single-impeller centrifuge with **BACK PULL OUT** horizontal shaft, with a spiral diffuser and separate support; axial intake and radial delivery; pumpmotor connection by means of a spacer flexible coupling complete with a safety guard UNI EN 12845 10.1

TO S

Pump:

- Pump body and impeller
- Shaft
- Mechanical seal

in EN GJL 250 cast iron in AISI 431 stainless steel ceramic-graphite

125-250

		Мо	tor	Pump	Fittings							Flans Bar	te - m³/h					
Pump Model	Pump ID	Electrical	Diesel	Intake	Delivery							Flow Ha	te - m /n					
		kW	kW	Ø	Ø		0	100	200	240	280	320	340	360	380	400	440	480
125-250/1	485	75	108	150	125		63	63	62.5	61.5	60	57.5	55.5	53.5	51	48.5		
125-250/2	502	90	108	150	125		74	74	74	73.5	71	68	66.5	65	63	61	57	
125-250/12	501	90	108	150	125		71.5	71	69	68.5	67	65	64	63	62	60	57	55
125-250/3	503	110	108	150	125	<u>ن</u>	80	80	79.5	78.5	77	74.5	73	72	70	68	64	
125-250/5	515	132	149	150	125	wm)	91	91	90.5	89.5	88	86.5	85	84	82.5	81	77	72.5
125-250/7	510	132	149	150	125	I	84	84	83	82	81	80	79	78.5	77.5	76.5		
125-250/13	516	160	149	150	125		88	90	92	92	91.5	91	90.5	90	89	88	86	85
125-250/8	520	160	149	150	125		98	98	98	97.8	97.5	97	96.5	96	95.5	95	88	87
125-250/6	525	160	149	150	125		102	102	102	101.5	100	98.5	98	97	96	95	92	

125-315

		Мо	tor	Pump I	Fittings							Elow Pa	te - m³/h					
Pump Model	Pump ID	Electrical	Diesel	Intake	Delivery							riow na	te - III /II					
		kW	kW	Ø	ø		0	100	150	200	250	300	350	400	450	500	550	600
125-315/1	530	160	177	150	125		109	109	109	108	105.5	102	98	94	88			
125-315/3	489	200	202	150	125	(mwc)	121	120	119	118	116	113	110	105	100			
125-315/5	491	200	202	150	125	Ξ.	123	123	122.5	122	121	119	116	113	108	103	97	92
125-315/4	537	250	222	150	125		131	131	130	129	128	126	124	121	116	112		

150-315

		Мо	tor	Pump	Fittings							Flow Rat	3/b					
Pump Model	Pump ID	Electrical	Diesel	Intake	Delivery							riow Rai	e-m·/n					
		kW	kW	Ø	Ø		0	200	250	300	350	400	450	500	550	600	700	800
150-315/1	540	200	202	200	150	ı	95	95	95	94.5	94	92.5	90.5	88	85	82	75	
150-315/6	545	250	222	200	150	_	100	103	103	103	102	100	97.5	95	92.5	90	82	73

150-500 1760 RPM

		Мо			Fittings							Flow Bot	te - m³/h					
Pump Model	Pump ID	Electrical	Diesel	Intake	Delivery							riow na	.e - III /II					
		kW	kW	Ø	Ø		0	200	240	320	360	400	440	520	560	600	720	800
150-500/2	600	250	255	200	150	I	115	112	111	109.5	108	107	106	103	101.5	100	94	88

Note

The data on the left of the reference refer to the maximum delivery speed allowed of 6 m/sec.

The data highlighted in red refer to speeds exceeding 6 m/sec. The data on a grey background highlight NPSH-R values > 5m.

For installations in HHS-HHP systems, contact our technical department.

Submersible axial flow vertical shaft pump, pump body connected to the control unit through the line shaft, fitted with an anti-rotation device to prevent machine counter-rotation when emptying the line shaft.

Pump:

 Control unit / Pump body / Impellers / Diffusers Shaft / Transmission sleeve / Tapered bush

made of grey cast iron

in stainless steel

Line shaft:

Rod support

made of grey cast iron

Transmission rod / Pipe

Note: Line shaft up to a maximum length of 4 m (longer lengths on request)

Diesel engine and control unit connected by a cardan joint

VTP 60E DN 80

		Мо	tor					_, _	. 2.		
Pump Model	ID Pump	Electrical	Diesel	Submersion				Flow Ra	te - m³/h		
		kW	kW	mm		0	10	20	30	40	50
VTP 60E/3A	021	5.5	6.2	370		40	40	38	35	28	17
VTP 60E/4B	022	5.5	6.2	370		47	46	45	40	30	15
VTP 60E/4A	023	7.5	6.2	370		54	53	51	47	38	22
VTP 60E/5B	030	7.5	7	370		59	58	56	50	38	19
VTP 60E/5A	035	11	10.5	370		67	67	64	59	47	28
VTP 60E/6B	040	7.5	10.5	370		71	70	67	60	45	22
VTP 60E/6A	045	11	10.5	370	6	80	80	77	70	56	34
VTP 60E/7A	047	11	10.5	370	н (тмс)	94	93	90	82	66	39
VTP 60E/8B	048	11	10.5	370	I	94	93	90	80	60	30
VTP 60E/9B	055	15	12.8	370		106	104	101	90	68	33
VTP 60E/8A	060	15	12.8	370		107	106	102	94	75	45
VTP 60E/10B	065	15	12.8	370		118	116	112	100	76	37
VTP 60E/9A	068	15	17.5	370		121	120	115	105	85	50
VTP 60E/10A	070	15	17.5	370		134	133	128	117	94	56
VTP 60E/11A	080	18.5	17.5	370		147	146	141	129	103	62

Values with a GREY background indicate NPSH-R values > 8m. For installations in HHS-HHP systems, contact our technical department. Nominal hydraulic characteristics of flow rate and head at the pump inlet, with performance tolerances according to UNI EN ISO 9906:2012 Grade 3B

VTP PUMPS - VERTICAL TURBINE PUMPS

Submersible axial flow vertical shaft pump, pump body connected to the control unit through the line shaft, fitted with an anti-rotation device to prevent machine counter-rotation when emptying the line shaft.

Pump:

Control unit / Pump body / Impellers / Diffusers

Shaft / Transmission sleeve / Tapered bush

made of grey cast iron in stainless steel

Line shaft:

Rod support

Transmission rod / Pipe

made of grey cast iron in steel

Note: Line shaft up to a maximum length of 4 m (longer lengths on request)

Diesel engine and control unit connected by a cardan joint

VTP 60F DN 80

		Мо	tor	Submersion					Flow Rat	m ³ /h			
Pump Model	ID Pump	Electrical	Diesel	Subiliersion					riow nai	.e - III /II			
		kW	kW	mm		0	10	20	30	40	50	60	65
VTP 60F/3B	082	7.5	6.2	370		42	41	39	38	34	28	20	16
VTP 60F/3A	083	7.5	7	370		47	45	44	42	40	35	27	23
VTP 60F/4B	084	7.5	10.5	370		56	54	53	50	45	37	26	21
VTP 60F/4A	085	11	10.5	370		62	61	58	56	53	46	36	31
VTP 60F/5B	087	11	10.5	370		70	68	66	63	56	46	33	26
VTP 60F/5A	090	15	12.8	370		78	76	73	70	66	58	46	39
VTP 60F/6B	092	11	12.8	370	H (mwc)	83	81	79	75	67	56	39	31
VTP 60F/6A	095	15	17.5	370	Ι =	94	91	88	84	80	70	55	46
VTP 60F/8B	100	15	17.5	370		111	108	105	100	90	74	52	42
VTP 60F/9B	105	18.5	17.5	370		125	122	118	113	101	83	59	47
VTP 60F/10B	110	18.5	25.2	370		139	136	132	125	112	93	66	52
VTP 60F/9A	120	22	25.2	370		140	136	131	126	119	104	82	69
VTP 60F/11B	121	22	25.2	370		153	149	145	138	123	102	72	57

VTP 60G DN 80

		Мо	tor	Submersion					Flow Rate - m ³ /h			
Pump Model	ID Pump	Electrical	Diesel	Submersion					riow hate - III /II			
		kW	kW	mm		0	20	40	50	60	70	80
VTP 60G/3A	123	7.5	6.2	370		41	37	35	32	28	21	14
VTP 60G/4B	124	7.5	7	370		48	46	40	35	29	20	10
VTP 60G/4A	125	11	12.8	370		55	49	47	43	37	28	19
VTP 60G/5A	130	11	12.8	370	6	69	62	59	54	46	36	24
VTP 60G/6A	135	15	12.8	370	(mwc)	82	74	71	64	55	43	28
VTP 60G/7A	140	15	17.5	370	I	96	86	82	75	64	50	33
VTP 60G/8A	145	18.5	17.5	370		110	98	94	86	74	57	38
VTP 60G/9A	155	18.5	25.2	370		123	111	106	96	83	64	42
VTP 60G/10A	160	22	25.2	370		137	123	118	107	92	71	47

Note

Values with a GREY background indicate NPSH-R values > 8m. For installations in HHS-HHP systems, contact our technical department. Nominal hydraulic characteristics of flow rate and head at the pump inlet, with performance tolerances according to UNI EN ISO 9906:2012 Grade 3B

Submersible axial flow vertical shaft pump, pump body connected to the control unit through the line shaft, fitted with an anti-rotation device to prevent machine counter-rotation when emptying the line shaft.

Pump:

Control unit / Pump body / Impellers / Diffusers

Shaft / Transmission sleeve / Tapered bush

in stainless steel

Line shaft:

Rod support

made of grey cast iron

made of grey cast iron

Transmission rod / Pipe

Note: Line shaft up to a maximum length of 4 m (longer lengths on request)

Diesel engine and control unit connected by a cardan joint

VTP 80E DN 125

		Мо	tor	0.1					El D	te - m³/h			
Pump Model	ID Pump	Electrical	Diesel	Submersion					Flow Ra	te - m [*] /n			
		kW	kW	mm		0	20	40	60	70	80	90	100
VTP 80E/2B	171	11	12.8	487.5		54	52	49	45	41	35	28	21
VTP 80E/3A	180	18.5	17.5	487.5		85	81	77	70	64	56	47	35
VTP 80E/3C	182	15	17.5	487.5		79	74	70	64	58	49	38	26
VTP 80E/4C	183	22	25.2	487.5	<u>.</u>	105	99	94	85	77	66	50	35
VTP 80E/4B	185	22	25.2	487.5	(mwc)	108	103	98	90	81	70	56	42
VTP 80E/5B	190	30	25.2	487.5	Ξ.	135	129	123	112	102	87	71	52
VTP 80E/5A	195	30	36.5	487.5		142	135	128	117	107	94	78	59
VTP 80E/6C	200	37	36.5	487.5		157	148	140	127	115	98	76	53
VTP 80E/6B	205	37	36.5	487.5		162	155	148	134	122	104	85	62

VTP 80F DN 125

		Мо	tor						_, _,	3.0			
Pump Model	ID Pump	Electrical	Diesel	Submersion					Flow Rat	e - m³/h			
		kW	kW	mm		0	20	40	60	80	100	120	135
VTP 80F/2C	212	18.5	25.2	487.5		53	52	51	50	47	41	33	26
VTP 80F/2A	215	22	25.2	487.5		58	56	55	53	51	46	39	30
VTP 80F/4D	230	30	36.5	487.5		96	92	87	76	67	55	40	28
VTP 80F/3C	237	30	25.2	487.5		79	78	77	74	71	61	49	38
VTP 80F/3A	238	30	36.5	487.5	H (mwc)	87	84	82	80	76	70	58	44
VTP 80F/4C	239	37	47.7	487.5	Ι =	106	104	102	99	94	82	66	51
VTP 80F/4A	240	45	47.7	487.5		116	112	110	106	102	93	78	59
VTP 80F/5B	247	55	47.7	487.5		139	138	134	129	122	111	91	73
VTP 80F/5A	248	55	47.7	487.5		145	141	137	133	127	116	97	74

Values with a GREY background indicate NPSH-R values > 8m. For installations in HHS-HHP systems, contact our technical department. Nominal hydraulic characteristics of flow rate and head at the pump inlet, with performance tolerances according to UNI EN ISO 9906:2012 Grade 3B

VTP PUMPS - VERTICAL TURBINE PUMPS

Submersible axial flow vertical shaft pump, pump body connected to the control unit through the line shaft, fitted with an anti-rotation device to prevent machine counter-rotation when emptying the line shaft.

Pump:

Control unit / Pump body / Impellers / Diffusers

Shaft / Transmission sleeve / Tapered bush

made of grey cast iron in stainless steel

Line shaft:

Rod support

Transmission rod / Pipe

made of grey cast iron

n steel

Note: Line shaft up to a maximum length of 4 m (longer lengths on request)

Diesel engine and control unit connected by a cardan joint

VTP 80G DN 125

		Мо	tor	Submersion						Flam Da	te - m³/h				
Pump Model	ID Pump	Electrical	Diesel	Submersion						Flow Ra	te - m·/n				
		kW	kW	mm		0	20	40	60	80	100	120	140	160	180
VTP 80G/2B	250	22	25.2	487.5		52	51	50	48	46	44	40	35	30	24
VTP 80G/3D	255	50	25.2	487.5		71	69	67	65	62	58	52	46	37	30
VTP 80G/3C	257	30	25.2	487.5		77	74	72	70	67	63	58	51	43	34
VTP 80G/3A	260	37	36.5	487.5	<u>ق</u>	81	79	77	74	71	68	63	56	47	38
VTP 80G/3B	265	30	36.5	487.5	wm)	79	77	74	72	70	67	62	54	46	35
VTP 80G/4B	268	37	47.7	487.5	Ι =	105	102	99	96	92	87	80	70	60	47
VTP 80G/5D	285	45	47.7	487.5		119	115	112	108	103	96	87	76	61	48
VTP 80G/5B	290	55	47.7	487.5		131	128	124	120	115	109	100	88	75	59
VTP 80G/5A	295	55	47.7	487.5		135	132	128	124	119	114	105	94	79	64

VTP 90A DN 150

		Mo	tor								100000000000000000000000000000000000000		0.07					
Pump Mode	I ID Pump	Electrical	Diesel	Submersion							Flov	w Rate - n	n³/h					
	Fullip	kW	kW	mm		0	90	100	108	116	126	130	144	152	162	180	198	216
VTP 90A/2B	310	30	36.5	585		62	56	56	55	54	53	52	50	49	47	44	40	36
VTP 90A/2A	315	37	47.7	585		67	61	60	60	60	59	58	56	55	53	50	46	40
VTP 90A/3C	320	45	47.7	585		87	78	77	76	75	74	72	69	67	63	58	52	47
VTP 90A/3B	325	45	47.7	585		93	84	83	82	81	79	77	75	73	71	66	60	54
VTP 90A/3A	330	55	66	585	ด	101	92	91	90	89	88	87	84	83	80	75	69	61
VTP 90A/4C	335	55	66	585	(mwc)	116	104	103	101	100	98	96	92	89	84	77	70	62
VTP 90A/4B	340	75	66	585	I	124	112	111	110	108	106	103	100	98	94	88	80	72
VTP 90A/4AB	345	75	66	585		129	117	116	115	114	111	109	107	104	100	94	86	76
VTP 90A/5B0	350	75	108	585		145	135	134	132	130	127	124	121	117	111	103	94	84
VTP 90A/5AB	355	90	108	585		154	147	145	144	142	139	137	133	130	125	118	108	96
VTP 90A/5A	360	90	108	585		168	153	151	150	149	147	145	141	138	133	125	115	101

Note

fighting units catalogue - Edition: November-2022

Values with a GREY background indicate NPSH-R values > 8m. For installations in HHS-HHP systems, contact our technical department. Nominal hydraulic characteristics of flow rate and head at the pump inlet, with performance tolerances according to UNI EN ISO 9906:2012 Grade 3B

Submersible axial flow vertical shaft pump, pump body connected to the control unit through the line shaft, fitted with an anti-rotation device to prevent machine counter-rotation when emptying the line shaft.

Pump:

 Control unit / Pump body / Impellers / Diffusers Shaft / Transmission sleeve / Tapered bush

made of grey cast iron

in stainless steel

Line shaft:

Rod support

made of grey cast iron

Transmission rod / Pipe

Note: Line shaft up to a maximum length of 4 m (longer lengths on request)

Diesel engine and control unit connected by a cardan joint

VTP 100A DN 200

		Мо	tor	0							El		.3 (1-					
Pump Model	ID Pump	Electrical	Diesel	Submersion							FIO	v Rate - n	n-/n					
		kW	kW	mm		0	126	144	162	180	198	216	234	252	270	288	306	312
VTP 100A/2D	365	45	47.7	585		71	65	64	62	60	57	54	52	48	43	40	35	33
VTP 100A/2C	370	55	66	585		76	70	68	66	64	62	60	56	52	48	44	40	38
VTP 100A/2B	375	55	66	585		82	74	73	71	69	66	64	61	57	53	48	44	43
VTP 100A/2A	380	75	66	585	<u>.</u>	86	78	76	74	73	71	68	65	62	58	53	50	48
VTP 100A/3D	385	75	66	585	(mwc)	107	98	96	93	89	86	81	77	71	65	59	53	50
VTP 100A/3C	390	75	108	585	Ι =	114	105	102	100	96	93	89	84	78	72	66	60	58
VTP 100A/3B	395	90	108	585		124	111	109	107	104	100	96	91	85	80	72	66	65
VTP 100A/3A	400	90	108	585		130	117	114	111	109	106	102	97	92	86	80	74	72
VTP 100A/4D	405	90	108	585		142	130	128	124	119	114	108	103	95	87	79	70	66

VTP 100B DN 200

		Мо	otor	Submersion							Elev	w Rate - n	a ³ /b					
Pump Model	ID Pump	Electrical	Diesel	Submersion							FION	w nate - II	11 /11					
		kW	kW	mm		0	100	150	175	200	250	275	300	325	350	375	400	450
VTP 100B/1A	406	45	47.7	585		45	44	43	42	40	38	36	34	32	30	28	25	18
VTP 100B/2CD	407	55	66	585		70	68	64	62	58	53	49	44	38	33	25	19	14
VTP 100B/2BC	408	75	66	585	(mwc)	76	74	71	68	66	58	56	51	45	40	34	25	16
VTP 100B/2A	409	90	108	585	н (п	90	89	86	84	82	76	74	69	65	61	56	51	38
VTP 100B/3BC	410	90	108	585		117	115	109	107	102	93	87	80	73	65	58	45	20
VTP 100B/3B	415	110	108	585		118	115	111	108	105	96	88	85	76	72	62	56	30

-ire-fighting units catalogue - Edition: November-2022

Values with a GREY background indicate NPSH-R values > 8m. For installations in HHS-HHP systems, contact our technical department. Nominal hydraulic characteristics of flow rate and head at the pump inlet, with performance tolerances according to UNI EN ISO 9906:2012 Grade 3B

SUBMERSIBLE ELECTRIC PUMPS

Multistage submersible electric pump with motor connection according to NEMA standard.

Electric pump:

Outlets: AISI 304 Stainless Steel (IDF/ID6)

Cast iron (IDS8)

Case AISI 304 Stainless Steel

Impeller: Noryl (IDF/ID6)

Cast iron (IDS8)

Diffuser Polycarbonate (IDF/ID6)

Cast iron (IDS8)

Shaft: AISI 304 Stainless Steel (IDF/ID6)

AISI 431 Stainless Steel (IDS8)

Motor submerged in an oil bath

IDF4

Pump Model	ID Pump	Motor Electrical	Column						FI	ow Rate - m³	/h				
	. ump	kW	Ø		0	4.8	6	7.2	8.4	9.6	10.8	12	14.4	16.8	18
IDF4-E300	405	2.2	50		82	75	71	66	59	50	40	30			
IDF4-F300	410	2.2	50	(c)	83	71	67	63	58	54	48	40	20		
IDF4-G300	415	2.2	50	mw(51	41	37	31	29	24	22	17	12		
IDF4-G400	430	3	50	I	70	57	52	44	41	34	32	24	18		
IDF4-G550	802	4	50		97	79	73	63	58	50	46	36	27		

ID6F

Pump Model	ID Pump	Motor Electrical	Column						FI	ow Rate - m³	/h				
		kW	Ø		0	12	15	16.8	18	21	24	30	36	42	48
ID6 F/4	803	4	50	(5)	61	52	49	47	46	43	38	28	14		
ID6 F/6	810	5.5	50	wE)	91	77	74	71	69	64	58	42	22		
ID6 F/8	820	7.5	50	I	123	105	100	96	94	86	78	56	29		

ID6 H

	Pump Model	ID Pump	Motor Electrical	Column						FI	ow Rate - m³	/h				
		rump	kW	Ø		0	16.8	18	21	24	30	36	42	48	54	66
:	D6 H/4	821	5.5	50		60	57	54	52	50	45	38	28	14		
÷ 1	D6 H/5	822	7.5	50	(C)	75	70	67	65	63	57	47	35	17		
-	D6 H/6	825	11	65	wm)	92	86	82	80	77	69	58	42	21		
: 1	D6 H/8	823	11	65	I	122	112	109	106	102	92	77	56	28		
1	D6 H/10	824	15	50		153	145	136	133	128	115	96	70	35		

ID6 L

3			Motor	Column						FI	ow Rate - m³	1/L				
E	Pump Model	ID Pump	Electrical	Column						FI	ow Rate - m	/n				
			kW	Ø		0	16.8	18	21	24	30	36	42	48	54	60
	ID6 55/4	845	7.5	50	ာ	64	61	58	56	53	51	48	45	41	37	33
	ID6 L/7	842	11	50	mw)	91	85	80	76	73	71	62	52	44	37	28
	ID6 L/12	844	18.5	50	I	156	145	140	130	125	122	105	89	76	63	48

SUBMERSIBLE ELECTRIC PUMPS

Multistage submersible electric pump with motor connection according to NEMA standard.

Electric pump:

• Outlets: AISI 304 Stainless Steel (IDF/ID6)

Cast iron (IDS8)

Case AISI 304 Stainless Steel

Impeller: Noryl (IDF/ID6)

Cast iron (IDS8)

Diffuser Polycarbonate (IDF/ID6)

Cast iron (IDS8)

Shaft: AISI 304 Stainless Steel (IDF/ID6)

AISI 431 Stainless Steel (IDS8)

Motor submerged in an oil bath

ID6 65

		Motor	Column						E1	ow Rate - m ³	/h					
Pump Model	ID Pump	Electrical	Column		Townside - III /II											
		kW	Ø		0	36	42	48	54	60	66	72	78	84	90	
ID6 65/5	861	11	65	(mwc)	82	66	62	59	54	50	44	38	31	24	15	
ID6 65/7	862	15	65		115	92	87	82	76	69	62	53	44	34	21	
ID6 65/9	863	18.5	50	I	148	118	112	106	98	89	79	68	57	43	27	

IDS8 NA

Pump Model	ID Pump	Motor Electrical	Column			Flow Rate - m³/h													
		kW	Ø		0	30	36	42	48	54	60	66	72	78	84	90	96		
IDS8 NA/4	881	15	80	wc)	110	88	84	79	75	70	65	60	54	48	41	35	28		
IDS8 NA/5	882	18.5	50	H (m	137	110	104	98	93	87	81	74	67	59	51	43	35		

IDS8 NB

Pump Model	ID Pump	Motor Electrical	Column														
	•	kW	Ø		0	48	54	60	66	72	78	84	90	96	108	120	126
IDS8 NB/4	901	18.5	65	· ·	107	81	78	74	71	68	65	61	58	54	45	35	30
IDS8 NB/5	902	30	65	mw)	134	101	97	93	89	85	81	76	72	67	57	44	38
IDS8 NB/6	903	30	80	I	166	125	120	115	110	105	100	95	89	83	70	55	47

IDS8 NC

Pump Model	ID Pump	Motor Electrical	Column												
		kW	Ø		0	72	78	84	90	96	108	120	126	132	150
IDS8 NC/4	921	22	80	wc)	105	73	70	66	63	59	51	44	39	35	22
IDS8 NC/5	922	30	80	E)	131	91	87	83	79	74	64	55	49	44	27

YOU WILL FIND ALL THE UPDATES ON OUR WEBSITE WWW.IDRO-ELETTRICA.IT

FOLLOW US ON SOCIAL MEDIA

PURCHASING DEPARTMENT

acquisti@idro-elettrica.it

CONTACTS

{firefighting passion}

Via Bellini 2, 41018 San Cesario sul Panaro (Modena) ITALY Phone: +39 059 936911 - Fax: +39 059 936990 info@idro-elettrica.it - http://www.idro-elettrica.it

